Statistical Tests for Total Variation Regularization Parameter Selection

نویسنده

  • Jodi L. Mead
چکیده

Total Variation (TV) is an effective method of removing noise in digital image processing while preserving edges [23]. The choice of scaling or regularization parameter in the TV process defines the amount of denoising, with value of zero giving a result equivalent to the input signal. Here we explore three algorithms for specifying this parameter based on the statistics of the signal in the total variation process. The Discrepancy Principle, a new algorithm based on the χ method for Tikhonov regularization [17]–[21], and an ”empirically Bayesian” approach suggested in [9]. In all three algorithms TV regularization is viewed as an M-estimator [3] and it is assumed to converge to a well defined limit even if the probability model is not correctly specified. These regularization parameter selection algorithms are implemented in such a way that they can supplement any TV optimization algorithm. The algorithms are useful for computationally large problems because a single regularization parameter is found that satisfies an appropriate statistical test, and the regularization parameter does not need to be manually adjusted, or iterated to zero. This is especially useful for nonlinear problems where an underlying linear problem is solved iteratively, taking the guesswork out of choosing the regularization parameter in each iterate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Χ Test for Total Variation Regularization

Total Variation (TV) is an effective method of removing noise in digital image processing while preserving edges [27]. The choice of scaling or regularization parameter in the TV process defines the amount of denoising, with value of zero giving a result equivalent to the input signal. Here we explore three algorithms for specifying this parameter based on the statistics of the signal in the to...

متن کامل

Spatially dependent regularization parameter selection in total generalized variation models for image restoration

The automated spatially dependent regularization parameter selection framework of [9] for multi-scale image restoration is applied to total generalized variation (TGV) of order two. Well-posedness of the underlying continuous models is discussed and an algorithm for the numerical solution is developed. Experiments confirm that due to the spatially adapted regularization parameter the method all...

متن کامل

Total Variation Regularization and L-curve method for the selection of regularization parameter

.......................................................................................................... i

متن کامل

A Novel Mechanical Fault Diagnosis Scheme Based on the Convex 1-D Second-Order Total Variation Denoising Algorithm

Convex 1-D first-order total variation (TV) denoising is an effective method for eliminating signal noise, which can be defined as convex optimization consisting of a quadratic data fidelity term and a non-convex regularization term. It not only ensures strict convex for optimization problems, but also improves the sparseness of the total variation term by introducing the non-convex penalty fun...

متن کامل

UPRE method for total variation parameter selection

Total Variation (TV) regularization is a popular method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose a good regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a good estimate of this parameter for Tikhonov regularization. In this paper we propose an extensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015